Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bose, Arpita (Ed.)ABSTRACT The marine cyanobacteriumProchlorococcusnumerically dominates the phytoplankton communities in all lower latitude, open ocean environments. Having lost the catalase gene,Prochlorococcusis highly susceptible to exogenous hydrogen peroxide (H2O2) produced at the ocean’s surface. Protection by H2O2-scavenging heterotrophic “helper” bacteria has been demonstrated in laboratory cultures and implicated as an important mechanism ofProchlorococcussurvival in the ocean. Importantly, some other phytoplankton can also scavenge H2O2, suggesting these competing microbes may inadvertently protectProchlorococcus. In this study, we assessed the ability of co-occurring phytoplankton, the cyanobacteriumSynechococcusand picoeukaryotesMicromonasandOstreococcus, to protectProchlorococcusfrom H2O2exposure when cocultured at ecologically relevant abundances. All three genera could significantly degrade H2O2and diminishProchlorococcusmortality during H2O2exposures simulating photochemical production and rainfall events. We suggest that these phytoplankton groups contribute significantly to the H2O2microbial sink of the open ocean, thus complicating their relationships with and perhaps contributing to the evolutionary history ofProchlorococcus.IMPORTANCEThe marine cyanobacteriumProchlorococcusis the most abundant photosynthetic organism on the planet and is crucially involved in microbial community dynamics and biogeochemical cycling in most tropical and subtropical ocean waters. This success is due, in part, to the detoxification of the reactive oxygen species hydrogen peroxide (H2O2) performed by “helper” organisms. Earlier work identified heterotrophic bacteria as helpers, and here, we demonstrate that rival cyanobacteria and picoeukaryotic phytoplankton can also contribute to the survival ofProchlorococcusduring exposure to H2O2. Whereas heterotrophic bacteria helper organisms can benefit directly from promoting the survival of carbon-fixingProchlorococcuscells, phytoplankton helpers may suffer a twofold injury: production of H2O2degrading enzymes constrains already limited resources in oligotrophic environments, and the activity of these enzymes bolsters the abundance of their numerically dominant competitor. These findings build toward a better understanding of the intricate dynamics and interactions that shape microbial community structure in the open ocean.more » « lessFree, publicly-accessible full text available May 21, 2026
-
Cardona, Silvia T (Ed.)ABSTRACT The fastest replicating bacteriumVibrio natriegensis a rising workhorse for molecular and biotechnological research with established tools for efficient genetic manipulation. Here, we expand on the capabilities of multiplex genome editing by natural transformation (MuGENT) by identifying a neutral insertion site and showing how two selectable markers can be swapped at this site for sequential rounds of natural transformation. Second, we demonstrated that MuGENT can be used for complementation by gene insertion at an ectopic chromosomal locus. Additionally, we developed a robust method to cure the competence plasmid required to induce natural transformation. Finally, we demonstrated the ability of MuGENT to create massive deletions; the 280 kb deletion created in this study is one of the largest artificial deletions constructed in a single round of targeted mutagenesis of a bacterium. These methods each advance the genetic potential ofV. natriegensand collectively expand upon its utility as an emerging model organism for synthetic biology. IMPORTANCEVibrio natriegensis an emerging model organism for molecular and biotechnological applications. Its fast growth, metabolic versatility, and ease of genetic manipulation provide an ideal platform for synthetic biology. Here, we develop and apply novel methods that expand the genetic capabilities of theV. natriegensmodel system. Prior studies developed a method to manipulate multiple regions of the chromosome in a single step. Here, we provide new resources that diversify the utility of this method. We also provide a technique to remove the required genetic tools from the cell once the manipulation is performed, thus establishing “clean” derivative cells. Finally, we show the full extent of this technique’s capability by generating one of the largest chromosomal deletions reported in the literature. Collectively, these new tools will be beneficial broadly to theVibriocommunity and specifically to the advancement ofV. natriegensas a model system.more » « less
-
Martiny, Jennifer B. (Ed.)ABSTRACT The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton community of the nutrient-limited open ocean, establishing itself as the most abundant photosynthetic organism on Earth. This ecological success has been attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and other advantages associated with cell size reduction and genome streamlining. In this study, we tested the prediction that Prochlorococcus outcompetes its rivals for scarce nutrients and that this advantage leads to its numerical success in nutrient-limited waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both mono- and cocultures when nutrients were replete. However, in nitrogen-limited medium, Prochlorococcus outgrew Synechococcus but only when heterotrophic bacteria were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleodii outcompeted Synechococcus for nitrogen but only if stimulated by the exudate released by Prochlorococcus or if a proxy organic carbon source was provided. Genetic analysis of Alteromonas suggested that it outcompetes Synechococcus for nitrate and/or nitrite, during which cocultured Prochlorococcus grows on ammonia or other available nitrogen species. We propose that Prochlorococcus can stimulate antagonism between heterotrophic bacteria and potential phytoplankton competitors through a metabolic cross-feeding interaction, and this stimulation could contribute to the numerical success of Prochlorococcus in nutrient-limited regions of the ocean. IMPORTANCE In nutrient-poor habitats, competition for limited resources is thought to select for organisms with an enhanced ability to scavenge nutrients and utilize them efficiently. Such adaptations characterize the cyanobacterium Prochlorococcus , the most abundant photosynthetic organism in the nutrient-limited open ocean. In this study, the competitive superiority of Prochlorococcus over a rival cyanobacterium, Synechococcus , was captured in laboratory culture. Critically, this outcome was achieved only when key aspects of the open ocean were simulated: a limited supply of nitrogen and the presence of heterotrophic bacteria. The results indicate that Prochlorococcus promotes its numerical dominance over Synechococcus by energizing the heterotroph’s ability to outcompete Synechococcus for available nitrogen. This study demonstrates how interactions between trophic groups can influence interactions within trophic groups and how these interactions likely contribute to the success of the most abundant photosynthetic microorganism.more » « less
-
Moran, Mary Ann (Ed.)ABSTRACT The mechanisms driving cyanobacterial harmful algal blooms (HABs) like those caused by Microcystis aeruginosa remain elusive, but improved defense against viral predation has been implicated for success in eutrophic environments. Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobacteria carry vastly more restriction modification systems per genome (RMPG) than nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of their ecological success. In contrast, picocyanobacteria that numerically dominate nutrient-poor systems have the fewest RMPG within the phylum Cyanobacteria . We used classic resource competition models to explore the hypothesis that nutrient enrichments drive ecological selection for high RMPG due to increased host-phage contact rate. These classic models, agnostic to the mechanism of defense, explain how nutrient loading can select for increased RMPG but, importantly, fail to explain the extreme accumulation of these defense systems. However, extreme accumulation of RMPG can be achieved in a novel “memory” model that accounts for a unique activity of restriction modification systems: the accidental methylation of viral DNA by the methyltransferase. The methylated virus “remembers” the RM defenses of its former host and can evade these defenses if they are present in the next host. This viral memory leads to continual RM system devaluation; RMs accumulate extensively because the benefit of each addition is diminished. Our modeling leads to the hypothesis that nutrient loading and virion methylation drive the extreme accumulation of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts with different RMPG values can coexist when hosts have unique sets of RM systems. IMPORTANCE Harmful algal blooms (HABs), caused by cyanobacteria like Microcystis aeruginosa , are a global threat to water quality and use across the planet. Researchers have agreed that nutrient loading is a major contributor to HAB persistence. While we may understand the environmental conditions that cause HABs, we still struggle in identifying the mechanisms that explain why these organisms have a competitive edge against other, less ecologically hazardous organisms. Our interdisciplinary approach in microbiology, mathematical population modeling, and genomics allows us to use nearly 70 years of research in restriction modification systems to show that HAB-forming cyanobacteria are exceptional in their ability to defend against viruses, and this capacity is intimately tied to nutrient loading. Our hypothesis suggests that defense against viral predation is a fundamental pillar of cyanobacterial ecological strategy and an important contributor to HAB dynamics.more » « less
-
Abstract Niche theory suggests that the realized niche occupied by an organism in the field is a subset of the fundamental niche space of the organism, absent additional biotic and abiotic factors. Though often assumed, this discrepancy is rarely tested for specific organisms, and could act as a source of error in model predictions of biogeographical shifts resulting from temperature change which assume niche theory constraints. Here, we quantify the difference between fundamental and realized temperature niches for four dominant ecotypes ofProchlorococcus, including eMED4, eMIT9312, eMIT9313, and eNATL2A, and ask whether the realized temperature niches of each ecotype vary across ocean basins. The realized niches for the four ecotypes are, on average, 3.84°C ± 1.18°C colder (mean ± SD across all ocean basins and ecotypes) and 2.15°C ± 1.89°C wider than the lab‐measured fundamental niches. When divided into four ocean regions—North Atlantic, South Atlantic, North Pacific, and South Pacific—we find that the realized temperature niche optimum for a given ecotype compared to the fundamental temperature niche optimum differs across regions by as much as 7.93°C, while the niche width can differ by up to 9.48°C. Colder and wider realized niches may be a result of the metabolic risk associated with living in variable environments when the mean temperature is too close to the optimal temperature for growth or due to physical processes such as dispersal. The strong differences in temperature niches across ocean basins suggest that unresolved genetic diversity within ecotypes, local adaptation, and variable interactive ecological and environmental factors are likely to be important in shapingProchlorococcusrealized temperature niches.more » « less
An official website of the United States government
